结语

本文描述了在不确定的情况下进行判断的三种启发式:(1)代表性。人们通常在需要判断物体A是否属于类别B或是事件A是否属于过程B时,就会使用代表性;(2)事件的可得性。当人们需要估测某类事件发生的频率或是某个特定进展的合理性时,就会使用可得性。(3)通过锚定进行调整。当相关数值可得时,许多预测都会用到锚定。使用这些启发式不仅能节约很多时间,大多数时候也很奏效,但它们也会导致一些系统性的错误。更好地理解这些启发式和它们带来的偏见,能够在不确定的情境下提高判断和决策的质量。